Master-Thesis-Multilingual-Longformer | Master thesis with code investigating methods | Natural Language Processing library

 by   MarkusSagen Jupyter Notebook Version: Current License: MIT

kandi X-RAY | Master-Thesis-Multilingual-Longformer Summary

kandi X-RAY | Master-Thesis-Multilingual-Longformer Summary

Master-Thesis-Multilingual-Longformer is a Jupyter Notebook library typically used in Artificial Intelligence, Natural Language Processing, Deep Learning, Pytorch, Bert, Neural Network, Transformer applications. Master-Thesis-Multilingual-Longformer has no bugs, it has no vulnerabilities, it has a Permissive License and it has low support. You can download it from GitHub.

Master thesis with code investigating methods for incorporating long-context reasoning in low-resource languages, without the need to pre-train from scratch. We investigated if multilingual models could inherit these properties by making it an Efficient Transformer (s.a. the Longformer architecture).
Support
    Quality
      Security
        License
          Reuse

            kandi-support Support

              Master-Thesis-Multilingual-Longformer has a low active ecosystem.
              It has 6 star(s) with 2 fork(s). There are 1 watchers for this library.
              OutlinedDot
              It had no major release in the last 6 months.
              There are 3 open issues and 3 have been closed. On average issues are closed in 37 days. There are no pull requests.
              It has a neutral sentiment in the developer community.
              The latest version of Master-Thesis-Multilingual-Longformer is current.

            kandi-Quality Quality

              Master-Thesis-Multilingual-Longformer has no bugs reported.

            kandi-Security Security

              Master-Thesis-Multilingual-Longformer has no vulnerabilities reported, and its dependent libraries have no vulnerabilities reported.

            kandi-License License

              Master-Thesis-Multilingual-Longformer is licensed under the MIT License. This license is Permissive.
              Permissive licenses have the least restrictions, and you can use them in most projects.

            kandi-Reuse Reuse

              Master-Thesis-Multilingual-Longformer releases are not available. You will need to build from source code and install.
              Installation instructions, examples and code snippets are available.

            Top functions reviewed by kandi - BETA

            kandi's functional review helps you automatically verify the functionalities of the libraries and avoid rework.
            Currently covering the most popular Java, JavaScript and Python libraries. See a Sample of Master-Thesis-Multilingual-Longformer
            Get all kandi verified functions for this library.

            Master-Thesis-Multilingual-Longformer Key Features

            No Key Features are available at this moment for Master-Thesis-Multilingual-Longformer.

            Master-Thesis-Multilingual-Longformer Examples and Code Snippets

            No Code Snippets are available at this moment for Master-Thesis-Multilingual-Longformer.

            Community Discussions

            QUESTION

            number of matches for keywords in specified categories
            Asked 2022-Apr-14 at 13:32

            For a large scale text analysis problem, I have a data frame containing words that fall into different categories, and a data frame containing a column with strings and (empty) counting columns for each category. I now want to take each individual string, check which of the defined words appear, and count them within the appropriate category.

            As a simplified example, given the two data frames below, i want to count how many of each animal type appear in the text cell.

            ...

            ANSWER

            Answered 2022-Apr-14 at 13:32

            Here's a way do to it in the tidyverse. First look at whether strings in df_texts$text contain animals, then count them and sum by text and type.

            Source https://stackoverflow.com/questions/71871613

            QUESTION

            Apple's Natural Language API returns unexpected results
            Asked 2022-Apr-01 at 20:30

            I'm trying to figure out why Apple's Natural Language API returns unexpected results.

            What am I doing wrong? Is it a grammar issue?

            I have the following four strings, and I want to extract each word's "stem form."

            ...

            ANSWER

            Answered 2022-Apr-01 at 20:30

            As for why the tagger doesn't find "accredit" from "accreditation", this is because the scheme .lemma finds the lemma of words, not actually the stems. See the difference between stem and lemma on Wikipedia.

            The stem is the part of the word that never changes even when morphologically inflected; a lemma is the base form of the word. For example, from "produced", the lemma is "produce", but the stem is "produc-". This is because there are words such as production and producing In linguistic analysis, the stem is defined more generally as the analyzed base form from which all inflected forms can be formed.

            The documentation uses the word "stem", but I do think that the lemma is what is intended here, and getting "accreditation" is the expected behaviour. See the Usage section of the Wikipedia article for "Word stem" for more info. The lemma is the dictionary form of a word, and "accreditation" has a dictionary entry, whereas something like "accredited" doesn't. Whatever you call these things, the point is that there are two distinct concepts, and the tagger gets you one of them, but you are expecting the other one.

            As for why the order of the words matters, this is because the tagger tries to analyse your words as "natural language", rather than each one individually. Naturally, word order matters. If you use .lexicalClass, you'll see that it thinks the third word in text2 is an adjective, which explains why it doesn't think its dictionary form is "accredit", because adjectives don't conjugate like that. Note that accredited is an adjective in the dictionary. So "is it a grammar issue?" Exactly.

            Source https://stackoverflow.com/questions/71711847

            QUESTION

            Tokenize text but keep compund hyphenated words together
            Asked 2022-Mar-29 at 09:16

            I am trying to clean up text using a pre-processing function. I want to remove all non-alpha characters such as punctuation and digits, but I would like to retain compound words that use a dash without splitting them (e.g. pre-tender, pre-construction).

            ...

            ANSWER

            Answered 2022-Mar-29 at 09:14

            To remove all non-alpha characters but - between letters, you can use

            Source https://stackoverflow.com/questions/71659125

            QUESTION

            Create new boolean fields based on specific bigrams appearing in a tokenized pandas dataframe
            Asked 2022-Feb-16 at 20:47

            Looping over a list of bigrams to search for, I need to create a boolean field for each bigram according to whether or not it is present in a tokenized pandas series. And I'd appreciate an upvote if you think this is a good question!

            List of bigrams:

            ...

            ANSWER

            Answered 2022-Feb-16 at 20:28

            You could use a regex and extractall:

            Source https://stackoverflow.com/questions/71147799

            QUESTION

            ModuleNotFoundError: No module named 'milvus'
            Asked 2022-Feb-15 at 19:23

            Goal: to run this Auto Labelling Notebook on AWS SageMaker Jupyter Labs.

            Kernels tried: conda_pytorch_p36, conda_python3, conda_amazonei_mxnet_p27.

            ...

            ANSWER

            Answered 2022-Feb-03 at 09:29

            I would recommend to downgrade your milvus version to a version before the 2.0 release just a week ago. Here is a discussion on that topic: https://github.com/deepset-ai/haystack/issues/2081

            Source https://stackoverflow.com/questions/70954157

            QUESTION

            Which model/technique to use for specific sentence extraction?
            Asked 2022-Feb-08 at 18:35

            I have a dataset of tens of thousands of dialogues / conversations between a customer and customer support. These dialogues, which could be forum posts, or long-winded email conversations, have been hand-annotated to highlight the sentence containing the customers problem. For example:

            Dear agent, I am writing to you because I have a very annoying problem with my washing machine. I bought it three weeks ago and was very happy with it. However, this morning the door does not lock properly. Please help

            Dear customer.... etc

            The highlighted sentence would be:

            However, this morning the door does not lock properly.

            1. What approaches can I take to model this, so that in future I can automatically extract the customers problem? The domain of the datasets are broad, but within the hardware space, so it could be appliances, gadgets, machinery etc.
            2. What is this type of problem called? I thought this might be called "intent recognition", but most guides seem to refer to multiclass classification. The sentence either is or isn't the customers problem. I considered analysing each sentence and performing binary classification, but I'd like to explore options that take into account the context of the rest of the conversation if possible.
            3. What resources are available to research how to implement this in Python (using tensorflow or pytorch)

            I found a model on HuggingFace which has been pre-trained with customer dialogues, and have read the research paper, so I was considering fine-tuning this as a starting point, but I only have experience with text (multiclass/multilabel) classification when it comes to transformers.

            ...

            ANSWER

            Answered 2022-Feb-07 at 10:21

            This type of problem where you want to extract the customer problem from the original text is called Extractive Summarization and this type of task is solved by Sequence2Sequence models.

            The main reason for this type of model being called Sequence2Sequence is because the input and the output of this model would both be text.

            I recommend you to use a transformers model called Pegasus which has been pre-trained to predict a masked text, but its main application is to be fine-tuned for text summarization (extractive or abstractive).

            This Pegasus model is listed on Transformers library, which provides you with a simple but powerful way of fine-tuning transformers with custom datasets. I think this notebook will be extremely useful as guidance and for understanding how to fine-tune this Pegasus model.

            Source https://stackoverflow.com/questions/70990722

            QUESTION

            Assigning True/False if a token is present in a data-frame
            Asked 2022-Jan-06 at 12:38

            My current data-frame is:

            ...

            ANSWER

            Answered 2022-Jan-06 at 12:13

            QUESTION

            How to calculate perplexity of a sentence using huggingface masked language models?
            Asked 2021-Dec-25 at 21:51

            I have several masked language models (mainly Bert, Roberta, Albert, Electra). I also have a dataset of sentences. How can I get the perplexity of each sentence?

            From the huggingface documentation here they mentioned that perplexity "is not well defined for masked language models like BERT", though I still see people somehow calculate it.

            For example in this SO question they calculated it using the function

            ...

            ANSWER

            Answered 2021-Dec-25 at 21:51

            There is a paper Masked Language Model Scoring that explores pseudo-perplexity from masked language models and shows that pseudo-perplexity, while not being theoretically well justified, still performs well for comparing "naturalness" of texts.

            As for the code, your snippet is perfectly correct but for one detail: in recent implementations of Huggingface BERT, masked_lm_labels are renamed to simply labels, to make interfaces of various models more compatible. I have also replaced the hard-coded 103 with the generic tokenizer.mask_token_id. So the snippet below should work:

            Source https://stackoverflow.com/questions/70464428

            QUESTION

            Mapping values from a dictionary's list to a string in Python
            Asked 2021-Dec-21 at 16:45

            I am working on some sentence formation like this:

            ...

            ANSWER

            Answered 2021-Dec-12 at 17:53

            You can first replace the dictionary keys in sentence to {} so that you can easily format a string in loop. Then you can use itertools.product to create the Cartesian product of dictionary.values(), so you can simply loop over it to create your desired sentences.

            Source https://stackoverflow.com/questions/70325758

            QUESTION

            What are differences between AutoModelForSequenceClassification vs AutoModel
            Asked 2021-Dec-05 at 09:07

            We can create a model from AutoModel(TFAutoModel) function:

            ...

            ANSWER

            Answered 2021-Dec-05 at 09:07

            The difference between AutoModel and AutoModelForSequenceClassification model is that AutoModelForSequenceClassification has a classification head on top of the model outputs which can be easily trained with the base model

            Source https://stackoverflow.com/questions/69907682

            Community Discussions, Code Snippets contain sources that include Stack Exchange Network

            Vulnerabilities

            No vulnerabilities reported

            Install Master-Thesis-Multilingual-Longformer

            Example of how to build, start, run and shutdown the docker container and the training script If you encounter problems, toggle the Technical Requirement and Pre-Requisites links to verify that you have a sufficiently large GPU and the pre-requisite applications/libraries installed.
            Download the repo git@github.com:MarkusSagen/Master-Thesis-Multilingual-Longformer.git cp .env.template .env
            Download the dataset Unzip the dataset and then place it in a suitable location wget https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-raw-v1.zip unzip wikitext-103-raw-v1.zip
            Change your model and dataset paths Open the .env file and change the DATA_DIR and the MODEL_DIR to the relative path to where you have you want your models stored and where you downloaded the dataset. Make sure that the folders you set exist on your system. For instance: DATA_DIR=/Users/admin/data/wikitext-103-raw MODEL_DIR=/Users/admin/model
            Start the docker container make build && make up
            Start tmux In your terminal start tmux. This will ensure that your runs are not stopped if you are disconnected from an ssh connection tmux
            Run the script Here is an example of how a training script might look like for pre-training a XLM-R model into a Longformer. The general format follows the parameters of Huggingface Transformer's TrainingArgument. export SEED=42 export MAX_LENGTH=4096 export MODEL_NAME_OR_PATH=xlm-roberta-base export MODEL_NAME=xlm-roberta-to-longformer export MODEL_DIR=/workspace/models export DATA_DIR=/workspace/data export LOG_DIR=/workspace/logs make repl run="scripts/run_long_lm.py \ --model_name_or_path $MODEL_NAME_OR_PATH \ --model_name $MODEL_NAME \ --output_dir $MODEL_DIR/$MODEL_NAME \ --logging_dir $LOG_DIR/$MODEL_NAME \ --val_file_path $DATA_DIR/wiki.valid.raw \ --train_file_path $DATA_DIR/wiki.train.raw \ --seed $SEED \ --model_max_length $MAX_LENGTH \ --adam_epsilon 1e-8 \ --warmup_steps 500 \ --learning_rate 3e-5 \ --weight_decay 0.01 \ --max_steps 6000 \ --evaluate_during_training \ --logging_steps 50 \ --eval_steps 50 \ --save_steps 6000 \ --max_grad_norm 1.0 \ --per_device_eval_batch_size 2 \ --per_device_train_batch_size 1 \ --gradient_accumulation_steps 64 \ --overwrite_output_dir \ --fp16 \ --do_train \ --do_eval "
            Shutdown run and container make down
            (Optional) terminate tmux exit

            Support

            The model weights and config for the XLM-Long are available at Huggingface. Import as model_name: markussagen/xlm-roberta-longformer-base-4096. For questions regarding the code or the master thesis in general add an issue in the repo or contact: markus.john.sagen@gmail.com.
            Find more information at:

            Find, review, and download reusable Libraries, Code Snippets, Cloud APIs from over 650 million Knowledge Items

            Find more libraries
            CLONE
          • HTTPS

            https://github.com/MarkusSagen/Master-Thesis-Multilingual-Longformer.git

          • CLI

            gh repo clone MarkusSagen/Master-Thesis-Multilingual-Longformer

          • sshUrl

            git@github.com:MarkusSagen/Master-Thesis-Multilingual-Longformer.git

          • Stay Updated

            Subscribe to our newsletter for trending solutions and developer bootcamps

            Agree to Sign up and Terms & Conditions

            Share this Page

            share link

            Consider Popular Natural Language Processing Libraries

            transformers

            by huggingface

            funNLP

            by fighting41love

            bert

            by google-research

            jieba

            by fxsjy

            Python

            by geekcomputers

            Try Top Libraries by MarkusSagen

            Surmize

            by MarkusSagenPython

            Essential_programs

            by MarkusSagenShell

            MediaTube

            by MarkusSagenJavaScript

            test_github

            by MarkusSagenJupyter Notebook

            tftransformers

            by MarkusSagenPython